


# Stepping motor control amplifier board series SE ... E50 V12 und SE ... E50 V14

- control of 2-phase stepping motors
- compatibel with STÖGRA standard amplifier boards series SE ... E50
- -- supply voltage nominal voltage : 24 VDC till 240 VDC
- phase current range 0 A / ph. 12 A / ph.
- integrated control of the motor load angle
  - in function with STÖGRA E50 encoder (50 impulses per chanel and revolution) at the motor (- also available as SE ... E200 V11/3 for E200 encoder (200 impulse per chanel and revolution))
- all connections and signals via 31 pol. connector H/F form
- protection against shortcircuit, overtemperature, and undervoltage
- -- via solder-bridges adjustable step angles: 400, 500, 800 and 1000 steps per revolution
- -- EMV according to EN 500082-2 and EN 55011 class B
- available with TTL- or SPS input signal level



#### Selectable adjustments

all adjustments can be made via (marked) solder-bridges on the backside of the logic board.

! Attention : Do not close L and H! (shortcircuit!)

| marker<br>R | signification open: automate current-reduction 50% at standstill closed: no current-reduction         | standard adjustment open |                               |  |
|-------------|-------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|--|
| W0,W1       | step angle adjustment (see table below)                                                               | open                     |                               |  |
| M           | open: a mechanical error will be put out closed: a mechanical error will be ignored.                  | open                     |                               |  |
| F           | intern function - must be open                                                                        | open                     | 3644 5 5                      |  |
| L-H         | L open, H closed: input signals HIGH - active<br>(the rising edge of the pulse-signal is significant) | H closed                 |                               |  |
|             | L closed, H open: input signals LOW - active (the falling edge of the pulse-signal is significant)    | L open                   | fig.2: selectable adjustments |  |

## Automatic current reduction ( marker »R« open )

The total phase current - adjustable via potentiometer - is set for nominal operation. If marker "R" is open, then the phase current will be reduced by 50% at standstill of the motor. The first arriving pulse increases the phase current again to the adjusted nominal value. By activated Reset input, the current reduction will be not activated.

## Step angle adjustments

via marker W0 and W1 X = marker closed

0 = marker open

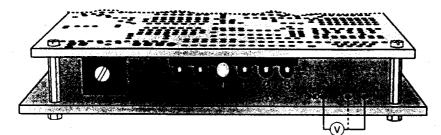
| W1 | W0 | steps per revolution |
|----|----|----------------------|
| 0  | 0  | 800                  |
| 0  | X  | 400                  |
| X  | 0  | 1000                 |
| X  | X  | 500                  |

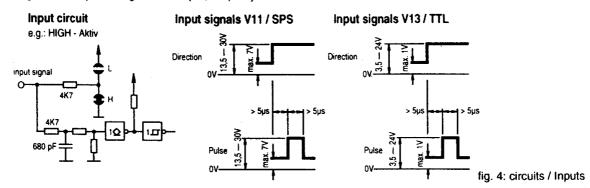
## **Current adjustment**

Ex factory the amplifier board is set to the nominal current. The motor phase current may be changed. For changing the phase current the Reset-signal has to be set. Then only LED "0" is active (see fig. 3)!

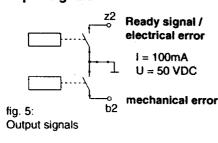
At measuring point B against point GND there can be measured a voltage which is proportional to the phase current.

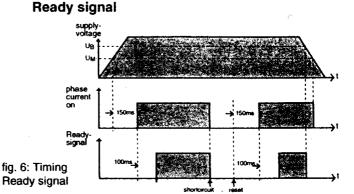
300 mV correspond to the nominal current of the amplifier board. Meaning that at a amplifier board type SE 400.04.60 E50 V14 the phase current is set to 4A/Ph., if the voltmeter shows 300mV. 225mV correspond to 3A/Ph. An exception are amplifier boards with a nominal current of 8A/Ph. - see table below. The phase current can be adjusted via the potentiometer on the board's frontside.





fig.3: currentadjustment and condition indication

| nominal current |                         | 1 A/Ph.<br>SE 400.01.24<br>E50 V14 | 4 A/Ph.<br>SE 400.04.85<br>E50 V12 | 6 A/Ph.<br>SE 500.06.85<br>E50 V12 | 12 A/Ph.<br>SE 800.12.120<br>E50 V14 | <b>8A/Ph.</b><br>SE 1000. <b>08</b> .120<br>E50 V14 |                            |        |
|-----------------|-------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------------------------|-----------------------------------------------------|----------------------------|--------|
| $\otimes$       | measured %              |                                    |                                    |                                    |                                      | measured voltage [A/Ph]                             |                            |        |
|                 | 375 mV<br><b>300 mV</b> | 125%<br>100%                       | 1,25<br>1                          | 5<br>4                             | 7,5<br><b>6</b>                      | 15<br><b>12</b>                                     | 333 mV 125%<br>267 mV 100% | 10     |
|                 | 225 mV<br>150 mV        | 75%<br>50%                         | 0,75<br>0,50                       | 3 2                                | 4.5                                  | 9                                                   | 200 mV 75%<br>133 mV 50%   | 6<br>4 |
|                 | max. adjust             | able current<br>hase (+ 5%)        | 1.4                                | 5.6                                | 8.4                                  | 14.5                                                |                            | 11.2   |


## Input - and Outputsignals


- -Boost increases the phase current by 20%.
- -Disable switches the phase current off.
- -Reset sets the unit in initial position phase zero. A pulse signal is ignored and errors are reset.
- -Direction controls the motor direction signal from system control.
- -Pulse with every pulse the motor will do one step.
- -Step angle divides the step resolution by two- 1000 (800) to 500 (400) steps/revolution, input is always low-active.
  - works only with open marker W0.
- -Change Direction turns the motor direction Coordination between the motor direction and the signal Direction
  - The signal is always low-active
- -electrical error (/Ready signal) is put out in case of undervoltage, shortcircuit or overtemperature.
  - At non-error-condition the Relais contact is closed the unit is ready (Ready signal).
- -mechanical error indicates lost steps of the stepping motor (load angle > 3,6°).
  - At non-error-condition the Relais contact is closed.
- -phase zero indicates the electrical zero-position (every 7,2° mechanically)

rising time max.: 1 $\mu s$  , falling time max.: 1 $\mu s$  , frequency Pulse max.: 45 KHz



## **Output signals**





Supply voltage

Maximum allowed supply voltage: Nominal voltage of power amplifier card plus 15% (mains fluctuations!)

The nominal output voltage of the power pack unit ( = supply voltage of power amplifier card) may not be higher than the nominal supply voltage of the power amplifier card.

E.g.: Calculation of a power pack unit for a SE 800.06.120 E50 V12 :

Output voltage of power pack = 120 VDC (and not (!) 138 VDC = 120 VDC + 15%)

## working range - supply voltage (see Ready signal fig.6)

| (Nominal-) supply voltage power amplifier card [VDC] | UB [VDC] | U <sub>M</sub> [VDC] |                                          |
|------------------------------------------------------|----------|----------------------|------------------------------------------|
| 24                                                   | 18       | 16                   | -                                        |
| 60                                                   | 43       | 32                   | U <sub>B</sub> and U <sub>M</sub> +/- 5% |
| 85                                                   | 43       | 32                   |                                          |
| 120                                                  | 50       | 38                   |                                          |
| 240                                                  | 120      | 100                  |                                          |

#### **Specifications**

#### Protection of the device

protection IP 00 (DIN 530) protection against shortcircuit (in the motor phases), overtemperature and undervoltage

#### weight

nominal current | 1 A/Ph | 4 A/Ph | 6 A/Ph | 8 A/Ph | 12 A/Ph weight | 0,2 Kg | 0,52 Kg | 0,77 Kg | 1,1 Kg | 1,1 Kg

#### **Ambient conditions**

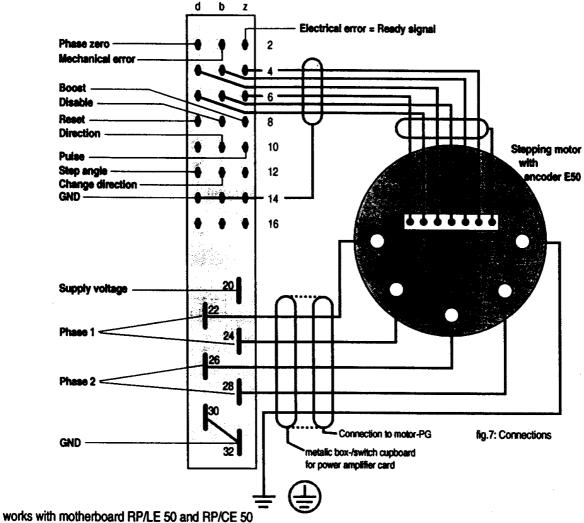
Ambient temperature: 0°C to 50°C max. heat sink temperature: 85°C

forced draft: necessary for power amplifier cards with nominal

current 8A and 12A

#### **Noise immunity**

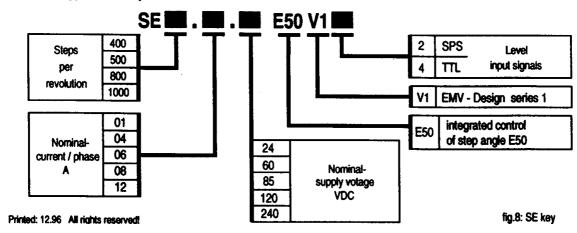
## by correct installation :


according to EN500082-2:

 at V14 (TTL-level) the signal inputs are not immune against fast transients (burst)

#### Noise radiation

by correct installation and shielding or/and filtering of the lines and signals according to EN55011 class B


Connections series E50 V12 / V14



TOTAL WILL MODICIDODIG THE FEE OF BING THE FOLLOW

Non used inputs may stay open, there is no need to connect to an external potential

Available types: Example: SE 800.06.120 E50 V12



#### STÖGRA ANTRIEBSTECHNIK GMBH

Machtlfinger Strasse 24 D-81379 München

Tel.: +49-89-15904000 Fax.: +49-89-15904009

E-Mail: <a href="mailto:info@stoegra.de">info@stoegra.de</a>
Internet: <a href="mailto:www.stoegra.de">www.stoegra.de</a>